أنواع الرادار

الرادار النبضي (Pulsed Radar)يعمل الرادار النبضي من خلال إرسال نبضات قصيرة جدا من الموجات الكهرومغناطيسية باتجاه الهدف وبمعدل يتم تحديده بناءا على البعد الأقصى الذي يمكن للرادار أن يقيسه. ويتم تحديد بعد الهدف في الرادار
النبضي من خلال قياس الفترة الزمنية التي استغرقتها النبضة من وقت إطلاقها إلى رجوعها للرادار ومن ثم يتم حساب بعد الهدف من خلال ضرب سرعة انتشار الموجات الكهرومغناطيسية في الفضاء والبالغة ثلاثمائة ألف كيلومتر في الثانية بنصف قيمة الفترة الزمنية المقاسة. ولكي يتمكن الرادار من تحديد بعد الهدف بدون أي التباس (ambiguity) يجب أن تصل النبضة المرتدة قبل إطلاق النبضة التالية وإلا فإن وصولها بعدها سيجعل الأمر ملتبسا على المستقبل لا يدري إن كانت النبضة المرتدة ناتجة عن النبضة المرسلة حديثا أم عن النبضات التي سبقتها. وعلى هذا فإن الرادار المصمم لقياس مدى قد يصل إلى مائة كيلومتر وبدون أي التباس يجب أن لا يزيد معدل النبضات المرسلة عن ألف وخمسمائة نبضة في الثانية. أما أقل بعد يمكن أن يقيسه الرادار فيتحدد من عرض النبضة المرسلة فالرادار النبضي لا يمكنه قياس النبضات التي ترتد في زمن يقل عن عرض النبضة. ولقياس بعد الأهداف القريبة يجب أن يقل عرض النبضة عن قيمة محددة يتم احتسابها من قيمة أقل بعد فعلى سبيل المثال فإن عرض النبضة يجب أن لا يزيد عن سبعة أجزاء من مليون جزء من الثانية. إن تقليل عرض النبضة سيؤدي إلى تقليل كمية الطاقة التي تحتويها وبالتالي سيؤدي إلى تقليل البعد الأقصى للهدف الذي يمكن للرادار أن يكتشفه ولذلك فإنه من الصعب استخدام الرادار النبضي في نفس الوقت لقياس بعد الأهداف البعيدة والقريبة ولذلك يوجد رادارات نبضية بعيدة المدى لا يمكنها قياس بعد الأهداف القريبة وكذلك العكس.













رادار دوبلر (Doppler Radar)
أما سرعة الأهداف المتحركة فيمكن قياسها باستخدام تأثير دوبلر (Doppler effect) والذي مفاده أن تردد الموجة الكهرومغناطيسية المرتدة عن الهدف المتحرك قد يزيد أو ينقص عن تردد الموجة المرسلة بمقدار يتناسب طرديا مع مركبة سرعة الهدف باتجاه الرادار ففي حالة الزيادة فإن الهدف يقترب من الرادار وفي حالة النقصان فإنه يبتعد عنه. ومن الواضح أن سرعة الهدف لا يمكن تحديدها بشكل مطلق إلا في حالة واحدة وهي إذا كان الهدف يتحرك بشكل مباشر نحو الهدف أما إذا كان يتحرك بزاوية عامودية أو مائلة على الخط الواصل بين الهدف وموقع الرادار فإنه من غير الممكن تحديد السرعة المطلقة. ويمكن حساب سرعة الهدف المطلقة بشكل غير مباشر إذا ما تمكنت المعالجات الموجودة في الرادار من تحديد اتجاه سير الهدف والسرعة الشعاعية (radial velocity) التي تم قياسها من خلال رادار دوبلر. ويقوم جهاز موجود في مستقبل الرادار بمقارنة الترددين وإيجاد الفرق بينهما ومن ثم يتم احتساب السرعة الشعاعية بضرب فرق التردد بثابت معين يتم تحديده حسب الوحدات المستخدمة لإظهار السرعة كأن تكون كيلومتر في الساعة. ولا بد من التنويه أن حساب السرعة يكون صحيحا إذا كان الرادار ثابتا أما إذا كان الرادار من النوع المحمول فإن السرعة التي يقيسها للهدف هي السرعة الشعاعية النسبية وهي حاصل جمع السرعتين الشعاعيتين إذا كانا يقتربان من بعضهما وحاصل الطرح في حالة التباعد.


















الرادار ذو الموجة المستمرة (Continuous Wave radar)
يعمل الرادار ذو الموجة المستمرة من خلال إرسال موجة كهرومغناطيسية جيبية عالية التردد بشكل مستمر وليس على شكل نبضات كما في الرادار النبضي. ويوجد نوعان من هذا الرادار ففي النوع الأول يكون تردد الموجة المرسلة ثابتا ولا يمكن في مثل هذا الحال قياس بعد الهدف سواء أكان متحركا أم ثابتا ولكن يمكن استخدام هذا الرادار لقياس سرعة الأهداف المتحركة باستخدام تأثير دوبلر. ويستخدم هذا النوع في التطبيقات التي تهتم بسرعة الهدف فقط كما في الرادارات المستخدمة من قبل الشرطة لقياس سرعات المركبات على الطرق ولكي يتمكن الشرطي من قياس السرعة بشكل دقيق عليه أن يوجه الرادار بنفس اتجاه سير المركبة ,وإلا ستكون السرعة المقاسة أقل من السرعة الحقيقية. ولقياس بعد الهدف باستخدام الرادار ذي الموجة المستمرة يتم تعديل تردد الموجة الجيبية بإشارة ذات تردد منخفض لها شكل سن المنشار (Sawtooth wave) بحيث يزداد تردد الموجة الجيبية خطيا من قيمة دنيا عند بداية الدورة إلى قيمة عليا عند نهايتها ويسمى هذا النوع رادار الموجة المتصلة بتعديل التردد (frequency-modulated continuous wave radar). وعندما يقوم المستقبل بمقارنة تردد الموجة المرتدة مع تردد الموجة المرسلة عند لحظة زمنية معينة نجد أن هنالك فرقا بينهما نتيجة للتأخير الزمن في الموجة المرتدة ومن السهل إثبات أن بعد الهدف عن الرادار يتناسب مع الفرق في التردد. ويستخدم هذا النوع من الرادار لقياس بعد الأهداف الثابتة حيث أن الأهداف المتحركة تعمل أيضا على تغيير التردد مما يجعل الأمر ملتبسا على المستقبل فلا يستطيع التمييز فيما إذا كانت الإزاحة في التردد ناتجة عن التأخير الزمني أو عن تأثير دوبلر. ومن الواضح أيضا أن هذا النوع من الرادارات لا يمكنه قياس سرعة الهدف وذلك لنفس السبب. ولذلك فإن رادار الموجة المتصلة بتعديل التردد يستخدم بكثرة في الطائرات لقياس ارتفاعها عن الأرض والذي يسمى راديو مقياس الارتفاع (radio altimeters).















رادار المصفوفة الطورية (Phased Array Radar)
لا يختلف رادار المصفوفة الطورية عن الرادار التقليدي سوى في نوع الهوائي المستخدم والطريقة التي يتم بها مسح الفضاء بشعاع الهوائي. ففي الرادار التقليدي تستخدم الهوائيات الصحنية والتي يتم تدويرها بسرعة معينة لكي تتم عملية المسح بينما يستخدم رادار المصفوفة الطورية هوائيات ثابتة لا تتحرك وتتم عملية مسح الفضاء المحيط بتوجيه الشعاع وتحريكه بطريقة إلكترونية. ويكمن سر هذا الرادار في هوائي المصفوفة الطورية (phased array antenna) وهو عبارة عن مجموعة من الهوائيات البسيطة (dipole antennas) يتم تغذيتها بتيارات يمكن التحكم بشدتها وبأطوارها (phases) بطريقة إلكترونية ومن خلال اختيار شدة التيارات وأطوارها للهوائيات البسيطة يمكن الحصول على شعاع أو أكثر وبأي اتجاه للهوائي الكلي. وتتميز هوائيات المصفوفة الطورية كذلك بقدرتها على تشكيل أكثر من شعاع ويمكن تحريك كل شعاع بشكل مستقل عن بقية الأشعة وهذا يناسب رادارات التتبع (tracking radars). لقد ظهرت فكرة استخدام الرادارات ذات المصفوفة الطورية خاصة في الطائرات الحربية أثناء الحرب العالمية الثانية ولكن لم تنجح محاولات بنائها إلا في الستينات بعد تطور تكنولوجيا الإلكترونيات. لقد أصبح هذا النوع من الرادارات هو المفضل في كثير من التطبيقات بسبب عدم الحاجة لتحريك الهوائيات ميكانيكيا وأكثر ما تستخدم في الطائرات بمختلف أنواعها وذلك لصعوبة وضع رادارات تقليدية على ظهرها.




















الرادار ذو الفوهة المصطنعة (Synthetic Aperture Radar (SAR))
يتطلب تصوير بعض الأهداف بحيث تظهر تفصيلات معالمه هوائيات ذات حجم بالغ الكبر وذلك للحصول على شعاع ضيق جدا يمكنه مسح تفصيلات الهدف. وغالبا ما يصعب بناء مثل هذه الهوائيات الكبيرة أو يصعب حملها بالطائرات إذا كان التصوير من الجو. وقد تم التغلب على هذه المشكلة من خلال استخدام مبدأ بسيط وهو أن عددا من الهوائيات الصغيرة الحجم المتباعدة مكانيا والموجهة نحو الهدف يمكن أن تقوم مقام هوائي كبير الحجم شريطة القيام بمعالجة معقدة للإشارات التي تلتقطها هذه الهوائيات من زوايا مختلفة وذلك باستخدام الحواسيب. وقد تم استخدام ما يشبه هذه الطريقة في تصوير المجرات حيث يتم توزيع الهوائيات على مناطق جغرافية متباعدة ويتم معالجة الصور الفردية الملتقطة غير الواضحة للحصول على صورة عالية الوضوح. وكذلك يتطلب تصوير أهداف موجودة على سطح الأرض بدقة واضحة من الجو باستخدام رادارات محمولة بالطائرات هوائيات كبيرة الحجم يصعب في الغالب وضعها على هذه الطائرات. وبدلا من استخدام عدة رادارات موزعة في الجو وهو ما يصعب تحقيقه تقوم طائرة واحدة تحمل رادار بهوائي صغير بالتحرك فوق الهدف وأخذ صور متلاحقة من أماكن مختلفة في الجو وعند معالجة هذه الصور يتم الحصول على صورة رادارية عالية الوضوح. يستخدم هذا النوع من الرادارات في تطبيقات لا حصر لها كالاستشعار عن بعد وفي تصوير الأهداف والمنشئات العسكرية.


















رادار التتبع (Tracking Radar)
تتطلب بعض التطبيقات أن يقوم الرادار بتتبع الهدف المتحرك بعد أن يتم اكتشافه من قبل نفس الرادار أو رادار آخر حيث يتوقف هوائي الرادار عن الدوران ويتم توجيهه نحو الهدف تماما ويتابع حركته باستمرار. وغالبا ما يتم استخدام نظام تحكم بتغذية راجعة سلبية تتحكم بحركة الهوائي لكي يتمكن من متابعة الهدف بشكل دقيق. وأكثر ما تستخدم مثل هذه الأنظمة في التطبيقات العسكرية حيث يتم ربط نظام التتبع بنظام التحكم بمصادر النيران بحيث يتم توجيهها نحو أهدافها بطريقة آلية وما على الجندي إلا الضغط على الزناد لإطلاق النار في الوقت المناسب أو يتم ذلك بشكل تلقائي. وتستخدم هذه الأنظمة في أنظمة الدفاع الجوي والصواريخ قصيرة المدى وفي الأنظمة المضادة للصواريخ وغيرها. وتستخدم كذلك في أنظمة هبوط الطائرات. إن أحد عيوب هذا النظام أن عملية المسح للأهداف الأخرى توقف بمجرد اكتشاف الرادار لأحد الأهداف والقيام بتتبعه وتحل هذه المشكلة إما بوجود رادارات أخرى أو باستخدام نظام التتبع مع البحث (track-while-scan (TWS))

















ولكن يلزم في هذه الحالة وجود حاسوب يقوم بتخزين معلومات عن عدد من الأهداف المتتبعة ويمكنه إرسال إشارات لأنظمة التحكم بالنيران لتوجيهها نحو هذه أهداف. ويمكن أن تحل هذه المشكلة أيضا باستخدام رادارات بهوائيات المصفوفة الطورية (phased array antenna). وتتميز هذه الأنواع من الرادارات بأن عملية المسح تتم بطريقة إلكترونية (electronic scanning) حيث لا يلزم تحريك الهوائي كما في الرادارات العادية. وتتميز كذلك بإمكانية برمجة الهوائي ليشكل أكثر من شعاع يستخدم بعضها للمسح وبعضها لمتابعة الأهداف.

0 التعليقات:

إرسال تعليق